2024 Ineson Lecture

Groundwater
Northumbria

Tuesday 19th November at the Geological Society, Burlington House, London.

Groundwater famine and feast. Quantifying future
groundwater extremes

The International Association of Hydrogeologist British National Chapter, together with the
Hydrogeological Group are pleased to announce the 2024 Ineson Lecture on the theme of
groundwater extremes — floods and droughts. The Ineson Lecture this year is sponsored by Project
Groundwater Northumbria, led by Gateshead Council, and funded by Defra as part of the £200
million Flood and Coastal Innovation Programmes (FCIP) managed by the Environment Agency.

Programme

09:30 am Registration & coffee in the Lower Library
10:30 am Welcome, Harriet Carlyle (Chair of IAH GB Chapter)

10:35 am Introduce sponsor, Geoff Parkin (Project Groundwater Northumbria specialist lead for the
Forecasting and Warning Workstream)

10:45 am Keynote Speaker Introduction

10:50 am Keynote speaker: David Macdonald (British Geological Survey) Groundwater flooding — from
mechanisms to mitigation

11:50 am Will Rust (Cranfield University) Groundwater teleconnections: decoding hidden patterns in
hydrological extremes

12:15 pm llias Karapanos (Affinity Water) Managing water resources in a changing climate — Droughts &
Floods

12:40 pm John Day Bursary
12:45 pm Lunch & Hydro Group AGM 1 hr

13:45 pm Wilco Klutman (Arcadis) Forecasting groundwater levels in the Netherlands — testing the theory
during the 2018 drought

14:10 pm Mark Fermor (GeoSmart Information Limited) Towards a more complete flood risk model for
Britain: The role of groundwater

14:35 pm Gemma Coxon (University of Bristol) Quantifying floods and droughts in rapidly changing human-
water systems

15:00 pm Hydrogeological Group Medal Awards
15:15 pm Tea
15:45 pm Ineson Lecture Introduction

15:50 pm Ineson Lecture: John Bloomfield (British Geological Survey) Understanding hydrogeological
extremes in a non-stationary world

16:50 pm Panel discussion

17:20 pm Drinks reception in the library


http://www.iah-british.org/
https://www.hydrogroup.org.uk/
https://projectgroundwaternorthumbria.org.uk/
https://projectgroundwaternorthumbria.org.uk/
https://www.gov.uk/guidance/flood-and-coastal-resilience-innovation-programme

Speaker Abstracts

Geoff Parkin (Geoff Parkin Hydro Ltd) Introduction to event sponsor — Project Groundwater Northumbria. For the past
two hundred years or so, water in mined coal seams in the NE of England have been pumped to keep them dry. In
the present post-closure phase, water level recovery is actively managed to avoid polluting discharges to the surface
and the risk of groundwater flooding, but as levels rise they may activate pathways and interactions with urban
infrastructure that did not exist prior to mining. Project Groundwater Northumbria (PGN) was initiated by Gateshead
Council to transform our understanding and response to groundwater flooding in this context. PGN is funded by the
Flood and Coastal Resilience Innovation Programme (FCRIP) over a 6-year period as one of 25 projects (3 related to
groundwater) aiming to discover and implement innovative solutions that enhance flood resilience. PGN brings
together new monitoring, geological and hydrogeological modelling, groundwater flood risk mapping and
forecasting, and knowledge sharing and community engagement, providing locally implemented outcomes that are
relevant to other areas with similar industrial heritage.

Dr David Macdonald (British Geological Survey) Groundwater flooding — from mechanisms to mitigation. The
recognition of groundwater-related flooding has grown over recent decades both within the UK and globally. The
body of research on the topic is also growing. This has examined the mechanisms and controls of groundwater
flooding, along with the associated risk and the nature of impacts. Although knowledge gaps still exist, the improved
understanding that has resulted has informed the management of the risk, and approaches to early warning and
mitigation are being tested. The public in groundwater flood-affected areas are becoming increasingly aware of the
mechanism and the need to adopt appropriate measures to reduce their flood risk. In this keynote talk,
developments in groundwater flood research will be reviewed, ‘from mechanisms to mitigation’, with a particular
focus on the work undertaken by the speaker and his colleagues at the British Geological Survey. The talk will also
draw on observations from living in a groundwater-flood prone urban area and the challenges of local residents in
developing effective flood action plans.

Will Rust (Cranfield University) Groundwater teleconnections: decoding hidden patterns in hydrological extremes.
Groundwater extremes are projected to have increasingly severe societal and environmental impacts in a warming
world. Forecasts of hydrological drought are an essential tool for minimizing these impacts, however existing early
warning systems are often limited to sub-seasonal lead times due non-stationarities in weather-hydrology systems.
This limitation poses a significant challenge to managing groundwater drought at a strategic level, where longer lead
times are required to build resilience. Groundwater teleconnections — long-distance relationships between
atmospheric systems such as the North Atlantic Oscillation (NAO) and groundwater — may offer a novel solution.
Here we will explore how latent multi-year behaviours in the NAO, principally a seven- to eight-year cycle, can have a
dominant influence on groundwater records and the occurrence of groundwater drought. These cycles can explain
up to 40% of borehole level behaviour and show a significant covariance with the number of boreholes in drought
conditions in the UK. Furthermore, using machine learning methods, these NAO behaviours can be skilful predictors
of regional drought at lead times of 4 years, with model skill (r2) of up to 0.8. Modelled errors vary from 14%
(percentage of boreholes in drought) in flashy hydrological regions or short droughts (< 3 months), to 2% for longer
duration droughts (> 8 months). Given the importance of teleconnection systems in driving hydrological extremes
across the planet, these results identify a new opportunity for long-lead hydrological drought forecasting with
potential global applications.

llias Karapanos (Affinity Water) Managing water resources in a changing climate — Droughts & Floods. In the public
water supply context, a “drought” is typically associated with a period of below average rainfall that has an impact
on water availability and source output. There are different types of droughts, with certain weather patterns
affecting the surface water or groundwater systems in variable ways as each drought evolves. On the other side of
the spectrum, in the last couple of years, flooding has taken place in a greater frequency than anticipated. In a
changing climate, the sway between these two extremes is likely to remain and water resources management will be
key going forward to ensure resilience is maintained at all times. This presentation will look into the historic
responses to both droughts and floods from a water company perspective and suggest ways to enhance resilience in
the future.



Wilco Klutman (Arcadis) Forecasting groundwater levels in the Netherlands — testing the theory during the 2018
drought. The reliability of any forecasting of the effects of groundwater on surface water starts with the
understanding of the groundwater system. Wilco will discuss the behaviour of groundwater in stream valleys, and
the mechanisms which restore the groundwater and stream water levels in these area under standard recharge
scenarios as well as extreme recharge scenarios. Using analytical methods, nowcasting as well as forecasting of
groundwater levels was undertaken. The work was tested during a drought scenario providing an opportunity to
compare the predicted to the reality and understand whether the identified required measurements would have
actually allowed an early warning of the consequences of the drought?

Mark Fermor (GeoSmart Information Limited) Towards a more complete flood risk model for Britain: The role of
groundwater. Understanding the groundwater component of flooding today and with our changing climate is key to
risk assessment on both a national and property scale. Traditional flood models simulate surface runoff but do not
represent the groundwater system dynamically, limiting the predictive capability. Findings are presented showing
the relative impact of climate change on the makeup of UK flood risk from different sources, including groundwater.
Groundwater causes disproportionately more damage in certain situations and a new paradigm (FloodSmart
Analytics) for flood risk assessment has been developed that enables quantification of the influence of groundwater
on flooding events and consequences. The new national 5m resolution model brings emergence and routing of
groundwater into the context of the other main flood sources and damage estimates to provide a more complete
flood risk estimate for property on a nationally consistent basis. Consideration of the different catchment lag
characteristics for groundwater and rivers reveals the importance of recognising flooding events as the coincidence
of two events, and the need to quantify joint probability when forecasting future flooding events. The example of
2014 flooding in the Thames valley is used to demonstrate the potential for future catastrophic flooding that is not
identified using current forecasting methods, and the need to move to a more holistic catchment approach to flood
risk assessment and management.

Gemma Coxon (University of Bristol) Quantifying floods and droughts in rapidly changing human-water systems.
Floods and droughts are increasing in their frequency, severity and duration, with the recent UK drought in the
summer of 2022 and flooding from Storm Henk in 2024 underlining the severe impacts from hydrological extremes.
Quantifying future floods and droughts is a key challenge for environmental scientists, particularly when accounting
for changes in climate, land use, water demand and management. This presentation will draw on recent advances in
national-scale hydrological modelling to show how an integrated approach considering surface-water, groundwater
and human-water interactions is critical for modelling future floods and droughts. It will look ahead to the need for
collaborative science to unlock advances in flood and drought prediction and reflect on opportunities to achieve this
via major new programmes, including the UK Flood and Drought Research Infrastructure.

John Bloomfield (British Geological Survey) Understanding hydrogeological extremes in a non-stationary world.
We’'re living in a non-stationary world where the intensity and frequency of climate extremes as well as other drivers
of environmental change have varied and are predicted to vary in a non-trivial manner both spatially and temporally.
Here, we consider the progress already made over the last 30 years or so in understanding hydrogeological
extremes, particularly groundwater drought.

After introducing a conceptual framework for analysis of hydrogeological extremes, including understanding how
hydrogeological stationarity can be a function of both spatial and temporal scales, we will explore the value of using
standardised time series in the analysis of hydrological extremes. We will then look at a series of case studies,
focussing on groundwater droughts, illustrating how hydrogeological extremes can be characterised and quantified
over a range of spatio-temporal scales, and we will end by discussing some of the challenges that we face in
improving our understanding of future groundwater droughts and floods and their impacts.

In this overview of our changing understanding of hydrogeological extremes, we hope to highlight three related
themes: i.) the importance of well-constrained conceptual or perceptual models of catchments, and the benefits of
consistent definitions of hydrological extremes; ii.) the challenge of obtaining suitable monitoring and observational
data, for what are typically rare events; and, iii.) the challenge of sustaining and growing investment in information,
expertise and knowledge generation related to hydrogeological extremes.



Speaker Biographies

Dr Geoff Parkin is an independent hydrological consultant and Director of Geoff
Parkin Hydro Ltd and Visiting Fellow at Newcastle University. He has more than 30
years of experience in modelling and field studies of integrated groundwater/surface
water systems, having developed and tested numerical methods and model software
related to most parts of the water cycle. His global experience includes Integrated
Water Resources Management (IWRM), modelling and capacity building in the
Palestinian Territories, Ethiopia and the other Nile Basin riparian countries, forest and
climate studies in South America, and various studies in Europe. He now works on
research, advisory and teaching roles with water industry partners in the UK, and is
currently specialist lead for the Forecasting and Warning Workstream of the FCIP
Project Groundwater Northumbria study, based in Gateshead in NE England.

Dr David Macdonald is a Principal Hydrogeologist with the British Geological Survey,
who has worked for the organisation since 1989. He is also the Head of Station at the
Survey’s Wallingford Office. David joined BGS with a BSc in Geophysics from the
University of Edinburgh, and an MSc in Water Resource Systems Engineering from
Newcastle-upon-Tyne University. In recent years he completed a PhD at University of
Reading studying groundwater processes in floodplain environments. David has
worked on a wide range of water resource projects across the globe, with particular
interest in the sustainability of water supplies from low storage, hard rock aquifers in
Africa and Asia, under a changing climate. David has an expertise in groundwater
flooding in both clearwater and permeable superficial deposit settings in the UK. His
research has addressed the understanding of groundwater flood mechanisms in these
settings, the quantification of risk, and approaches to manage this risk. In recent years
he has focussed on the efficacy of nature-based solutions as a means to reduce
groundwater flooding.

Dr Will Rust is a Research Fellow in Environmental Data Science at Cranfield
University. His research investigates how the dynamics of environmental systems —
such as hydrological and ecological systems — vary over time and across spatial
scales. His focus is on the response of hydrological and ecological systems to human
and environmental influences (such as weather and climate) and how the
configuration of these systems effects their resilience to change. He is currently
working across two NERC projects focusing on hydro-ecological restoration,
resilience and the role of blue-green infrastructure in improving ecosystem services.
He has previously led groundwater and river flood modelling projects at a local and

regional scale, including the UK and overseas.

Dr llias Karapanos is a water resources specialist with over 18 years’ experience in
the field of hydrogeology and water resources management. Working as a
hydrogeologist for Affinity Water since 2011, his research has primarily focused on
low flow studies and the impact of public water supply abstraction on river flows
and groundwater levels in the Chalk aquifer. Ilias has managed several National
Environment Programme projects and has led numerous pumping tests and
groundwater pollution investigations. On his current role as the Head of Water
Resources Management Planning team at Affinity Water, he is responsible for the

delivery of the Water Resources Management Plan (WRMP), which is the long-term strategic plan for water
resources looking into the supply-demand balance up to 2075. He also provides advice and technical support to a
number of teams within the business, including drought resilience and flood management of water resources. llias is
a Chartered Geologist with the Geological Society and a Council member since Spring 2024.



Wilco Klutman is a Dutch Physical Geographer (Msc. Utrecht University) with over
15 years’ experience with Arcadis in The Netherlands. His focus is on connections
between the hydrological, hydrogeological and man-made environment,
effectively analyzing these inputs and developing comprehensive water system
conceptualizations. With extensive experience in geohydrology and the utilization
of regional, as well as smaller scale, groundwater models, Wilco translates these
conceptualizations into the modelling environment. Wilco has worked on
groundwater flooding and drought projects for a broad range of interested parties
including provinces, water utilities, Rijkswaterstaat, water boards, and
municipalities to contractors, road builders, and developers.

Mark Fermor is a hydrogeologist with over 35 years of experience primarily in the
UK advising on water resources, flooding, contamination and environmental risk
management. Mark founded ESI in 1996, a specialist soil and groundwater
consultancy advising the water industry, regulatory bodies, waste management
and property and infrastructure companies on catchment resources and risk
management. In 2013 he founded GeoSmart Information Limited, a specialist
environmental risk data and analytics enterprise that published the first
groundwater flood risk map for Britain in 2014 and over the last ten years has
developed FloodSmart Analytics, a combined flood risk from all sources model
used across all parts of the property cycle from regulatory planning, property development and transactions,
insurance, lending and asset management. Current work is focused on flood and climate risk assessment and
management, particularly working with asset management and in the insurance and finance sectors.

Gemma Coxon is an Associate Professor in Hydrology and UKRI Future Leaders
Fellow based at the University of Bristol. Her research focusses on understanding
and predicting hydro-climatic extremes (floods and droughts) in changing
environments. She built and co-developed the hydrological model DECIPHeR which
is now used for hydrological predictions across the UK and led the development of
the CAMELS-GB dataset consisting of hydrometeorological timeseries and
landscape attributes for 671 catchments across the UK. Her team works closely
with communities, water companies, and regulatory bodies across the UK, and are
currently involved in projects on (1) delivering a £38M large-scale investment

in flood and drought research infrastructure in the UK and (2) informing the
development of new water infrastructure as part of the Ofwat RAPID programme.

Dr John Bloomfield is a Principal Hydrogeologist at the British Geological Survey
(BGS) where he has worked for the last 33 years. He joined the BGS after a Masters
in Structural Geology and a Doctorate in experimental rock deformation, both from
Imperial College. He initially worked on BGS’ core characterisation programme for
NIREX before managing BGS’ Aquifer Properties Laboratory and leading work on
characterisation of the physical properties of aquifers. In the early 2000s he
became the Groundwater Resources Topic and Team leader for BGS where he has
overseen a wide range of projects investigating geological controls on
hydrogeology, and, for the last decade or more, groundwater responses to
hydrological extremes and climate change. He has published over 80 papers in the
peer-reviewed literature on topics as diverse as: the behaviour of DNAPLs in the
subsurface; the effect of climate change on the fate of pesticides; groundwater stygobites; models of the growth
fractures; the hydrogeology of the Chalk; and, fractal scaling of groundwater levels. His recent work has focussed
primarily on groundwater drought.




Posters

Innovate use of groundwater to boost resilience during high demand water supply events

Paul Wilson,* Rebecca Ni Chonchubhair®, Conor Courrtney?
1British Geological Survey, 2Northern Ireland Water Ltd

How the innovative use of groundwater is being considered to solve water supply deficit and high demand supply
events in Northern Ireland. Can it solve everything and what are the challenges and considerations that need to be
made? This poster will present on the challenges currently being faced and how groundwater has been freshly
considered as an option to address water supply deficits, particularly during high demand events. It will discuss some
of the difficulties faced and the practical challenges of reintroducing groundwater abstraction back into public water
supply production in the 21 Century.

Linking hydrological indices to impact: Insights from 200 years of flood and drought reporting in a Chalk catchment

Matthew Ascott’, Kathryn Graves?, Ben Marchant?, John Bloomfield*
1British Geological Survey, ’Chesham Town Council

Standardized hydro-meteorological indices (e.g. standardized precipitation index (SPI1), standardized precipitation-
evapotranspiration index (SPEI), standardized groundwater index (SGI)) are commonly used in analyses of
hydrological extremes, but relationship between these indices and observed flood and drought impacts are poorly
constrained. This is in part due to a scarcity of long-term datasets of flood and drought impacts. Here we report the
development and analysis of a local scale database of flood and drought impacts derived from newspaper records
for 1800 — 2022 in a groundwater dominated lowland catchment in Southeast England (UK). Logistic regression was
used to evaluate relationships between standardized indices (SPI-1 to SPI-48, SPEI-1 to SPEI-48, SGI) and reported
flood and drought impacts. The strongest predictor variables and accumulation periods varied between floods and
droughts. Potential drought and flood threshold values for standardized indices are assessed. The protocol
developed here can be applied to other catchments to better characterise flood and drought impacts and how these
relate to the driving hydrology.

Exploring the relationship between groundwater drought and evapotranspiration with the JULES land surface
model

Sarah Collins (BGS)

Hydrological droughts can last months to years and impact large areas, leading to a multitude of ecological and
socio-economic harm. The role of evapotranspiration (ET) in drought is very variable and there is contradicting
evidence on the impact of anthropogenic warming on groundwater drought in the UK. We integrate a distributed
groundwater model into the JULES land surface model (JULES-DGW) and simulated a Chalk catchment in southern
England over the period 1901-2015. The model showed a good match to river flows (Kling-Gupta efficiencies 0.73—
0.83) and groundwater levels (r2 = 0.92). Splitting the model into three roughly equal periods (1901-1938, 1939—
1976, 1977-2015), we found a general trend of drying with small drops in average moisture in the unsaturated zone
and average groundwater levels, caused by increases in annual ET (58%, 59%, 61%) and decreases in recharge (40%,
38%, 36%) as a fraction of precipitation. The model suggests drier conditions in the unsaturated zone in late
summer/early autumn in the most recent period have led to a delay in the recharge season. No increase in capillary
rise was simulated throughout the modelling period and ET was found to have a positive anomaly in most cases of
severe drought.

Conceptual model development to inform flood and drought observational infrastructure design in the Chess

Matthew Ascott?, Joel Blackburn?, James Sorensen®, John Bloomfield*, Jon Evans?, Gareth Old?
1British Geological Survey, 2UK Centre for Ecology and Hydrology

Floods & Droughts Research Infrastructure is a £38 million project commissioned by UKRI-NERC to improve our
understanding of how, when and where floods and droughts occur in the UK. This will inform action to improve our
resilience to the increasing impacts of climate change. The River Chess catchment in SE England is one of three



catchments selected for fixed infrastructure. The Chess is a groundwater fed river situated on the Chalk with a base
flow index of 0.95, highlighting the importance of the Chalk aquifer on surface flows. Work to date has used existing
information to develop a conceptual model of the functioning of the catchment and identify any remaining
uncertainties. The poster highlights elements of the catchment water balance, proposed monitoring infrastructure
types and locations, uncertainties and the next steps.

The Role of Groundwater in Adapting to Climate Change and Increasing Resilience to Drought
Brady Johnson?, Jean-Christophe Comte’, Rachel Helliwell?, Alan MacDonald?, Chris Soulsby*

IUniversity of Aberdeen, School of Geosciences, AB24 3UF, Scotland, UK. 2James Hutton Institute, Centre of Expertise
for Waters, Aberdeen AB15 8QH, Scotland UK. 3British Geological Survey, Edinburgh EH14 4AP, Scotland UK

In recent years, Scotland has experienced some of the most severe droughts on record with 2022 seeing the Scottish
Environmental Protection Agency (SEPA) categorise all eastern Scotland river catchments in moderate to significant
water scarcity status. At these levels, SEPA has authority to strategically suspend abstraction permits in these areas.
Drought in Eastern Scotland is predicted to be more frequent and severe under most climate change scenarios.
Although groundwater supplies many citizens in rural areas and supports major agricultural and economic sectors
(e.g. whisky distilling), groundwater infrastructure is often limited and located in shallow, low storage aquifers most
at risk during drought conditions.

The study draws on observations and data obtained between the Deveron and Tweed River catchments on the east
coast of Scotland with a focus on the Ythan and Dee catchments in Aberdeenshire, while incorporating characteristic
response and monitoring data throughout aquifers in eastern Scotland. Groundwater level data is obtained from
existing monitoring networks and will be supplemented with new instrumentation in areas of interest from this
project. Long term water level trends have been identified and modelled incorporating hydrogeologic properties
related to storage and/or lithology and structure. Relationships between the annual magnitude and timing of
groundwater level change in both drought and typical climate conditions are being developed for identified
hydrologic regimes in the region (e.g. high storage, low recharge; low storage, high recharge) with a focus on
aquifers that may be more resilient to future water scarcity issues and extreme drought events.

Project Groundwater Lincolnshire: Scopwick groundwater flooding
Victoria Crellin (AtkinsRéalis)

Project looking at groundwater flooding at Scopwick Lincolnshire, being carried out for Lincolnshire County
Council (LCC) under Project Groundwater — Greater Lincolnshire (PGW) as part of the Flood and Coastal
Resilience Innovation Programme (FCRIP), funded by the Department for Environment, Food & Rural Affairs
(Defra). The trial community of Scopwick has increasingly suffered from sewer related flooding over the last
decade, despite numerous relining activities. This project is focused on improving the understanding of
groundwater flooding, with a view to trialling solutions to manage groundwater flooding issues.

Groundwater and drought in the horn of Africa
Alan M MacDonald, Donald J MacAllister, Seifu Kebede, Tilahu Azagegn, Eddie Banks and Rachel Bell

Groundwater is often relied on to provide secure drinking water, particularly in rural Africa, where other options are
limited. The increased incidence of drought and its likely escalation due to climate change raise questions as to how
resilient groundwater is to drought, and how the performance of different technologies used to access groundwater
compares during drought. Here we report the results of three research studies undertaken in Ethiopia to directly
address these questions. We first examine hydrographs from 19 wells, springs and boreholes during the 2015/16 El-
Nifio drought and the years following. Secondly, we report the results of a survey of groundwater recharge for 50
sampled boreholes from 4 woredas (districts) and, lastly, we examine the response of >5,000 different water points
from across Ethiopia from January to April 2016 as the drought evolved. The results from the three studies all give a
consistent story: groundwater supplies, particularly those accessing groundwater deeper than 15 metres, are
resilient to the short-term effects of drought and become increasingly important as other water sources (e.g.,
springs) fail. Hand-pump-operated boreholes were often the most reliable sources during drought periods, although
motorized boreholes, if accompanied by active monitoring and maintenance, also proved so. Springs and hand-dug



wells were generally, but not universally, severely impacted by drought, with those at higher elevations most
affected. Recharge studies using environmental tracers suggested that the mean residence time of groundwater
(<100 metres deep) is in the order of several decades across the Ethiopian Highlands. This indicates modern recharge
is occurring but is not reliant on very recent rainfall; thus, groundwater is both resilient to drought and renewable
when managed appropriately. Additional pressures put on groundwater supplies by the drought were shown to be
mitigated by an active and sustained campaign of monitoring and maintenance as drought evolved.

Dewatering a Groundwater Ocean
Juan Rivera (Envireau Water)

Channel Iron Deposits (CID) in the Pilbara region in Western Australia are a great source of iron ore for mines, but
can also store large volumes of groundwater. The large groundwater quantities observed during the mineral
exploration, made it necessary to include a thorough hydrogeological feasibility assessment for a new proposed
mine. In an area with high evapotranspiration and only seasonal rainfall, one would expect recharge into the CID
aquifer to be low; however, it was identified that discharges from upstream mines were recharging the CID aquifer
at a fast pace, which would increase the pumping costs for the new mine in order to extract the mineral.
Groundwater surplus in the area can bring mining projects down. Catchment management usually reflects the
present and past water issues, but future users are not included and will have to deal with what is already in place,
making current catchment management plans an unfair system.

Future-Proofing the Scotch Whisky Sector: Strategies for Climate Resilience
Shona Symon (Envireau Water)

Securing a reliable water supply is paramount for the distilling industry. Increasingly volatile weather patterns and
stringent regulations are already limiting production capacity and constraining expansion opportunities. In addition,
Climate Change predictions show that the River Spey, vital to whisky production in Speyside, is projected to
experience severe low flows twice as often compared to current levels. Groundwater resources, particularly shallow
systems used widely across the distilling sector, face a similar crisis, with declining recharge and heightened
depletion risks.

Access to consistent groundwater sources is critical in maintaining distilling operations across the six distilleries
located in Dufftown. Working across all these distilleries has allowed a thorough review of the key risks to be
identified, including an assessment of how vulnerable these water sources are to climate change. This has then been
used to inform decision making to ensure that effective water management

contributes positively to increased climate resilience.

Learnings from Test Pumping Exercises Conducted in a Confined Limestone Aquifer in Drought Conditions.
Jenny Harrison (Envireau Water)

An extended Constant Rate Test (CRT) pumping exercise was undertaken on a water supply borehole towards the
end of the drought period in 2022. The water level in the borehole did not reach equilibrium during the test. A series
of hydrographs are presented, showing the CRT pumping exercise and analysis of the background groundwater
recession based on other monitoring points and long-term historical records. The data supports a more pragmatic
approach towards abstraction licensing and the use of longer duration operational tests to consider aquifer response
to pumping over increasingly frequent seasonal groundwater extremes.

Project Groundwater Greater Lincolnshire: Exploratory groundwater modelling for sustainable
abstraction and flood alleviation in Grimsby, Barton and Barrow

Claire Cook (WSP)

In Lincolnshire, DEFRA’s ‘Project Groundwater’ funding is being used by a local council led consortium of the
Environment Agency, National Flood Forum and academics with inputs from Anglian Water to better understand the
causes of groundwater flooding associated with both the Chalk and Limestone aquifers and develop innovative
management solutions. In Grimsby, following saline intrusion problems, significant reductions in industrial and
public water supply abstraction have resulted in groundwater rebound with flooding of basements focused around
blow well pathways through the Till which blankets the coast-marginal marsh. The leaky sewer system acts to



intercept and reduce flooding risks but the higher rates of diluted effluent create problems for treatment. Analysis
of historical groundwater level and abstraction relationships combined with modelling has demonstrated that
increased abstraction combined with locally lowered drainage offers the best way forward, as well as reducing sewer
surcharging and providing a valuable resource of clean groundwater for public supply and potentially for open-loop
heating of the hospital. Enhanced monitoring of groundwater levels is essential to assess effectiveness into the
future of climate change as sea levels rise and inland recharge rates fall to guard against the risks of saline intrusion.

From drips to drenches: an investigation into the East Yorkshire Chalk’s Gypsey Race
Kieran Topen and Caroline Ball (SWECO)

As part of Yorkshire Water’s WINEP investigations into abstraction impacts on WFD surface water bodies, monitoring
has been undertaken during a period of significant drought followed by a very wet period. This study examines these
groundwater extremes as experienced by the East Yorkshire Chalk's Gypsey Race, as well as the preceding period
when climate change impacts have also been identified. The project aims to develop the understanding of how both
groundwater and surface water interact with public water supply abstraction and emphasizes the importance of
catchment conceptualization in water resource management. The findings contribute to a better understanding of
the challenges posed by fluctuating groundwater conditions as the aquifers respond to climate change, which will
support future strategies for sustainable management in the region.

Transnational, Harmonised Data Gathering, Monitoring and Evaluation of Groundwater Dynamics in the Context
of Climate Change

Peter van der Keur (GEUS), Stefan Broda (BGR), Mariana Gomez (BGR), Georgina Arné (ICGC), John Bloomfield (BGS),
Bentje Brauns (BGS), David Pulido (IGME)

This poster presents the European Groundwater Monitoring Database (EUGM), a transnational platform for
harmonized groundwater data collection and monitoring across Europe. EUGM will support a database of
groundwater levels, and will the data can be used, e.g. for trend detection and evaluation of drought histories with
the Standardized Groundwater level Index (SGI). At the later stages of the project this GSEU (Geological Surveys for
Europe https://www.geologicalservice.eu ), near-real-time data will also be used for short- and long-term
forecasting.

Groundwater systems response to major, continental-scale droughts: a multidecadal case-study for Europe
Bentje Brauns?, John Bloomfield?, David Hannah®, Ben Marchant®, and Anne van Loon®

1British Geological Survey, Keyworth, UK. ?British Geological Survey, Wallingford, UK. 3School of Geography, Earth &
Environmental Sciences, University of Birmingham, Birmingham, UK. #Institute for Environmental Studies, Vrije
Universiteit Amsterdam, Amsterdam, The Netherlands

Groundwater systems are susceptible to drought, but the link between meteorological droughts and groundwater
responses is complex due to varying climate drivers, catchment characteristics, and human interventions. Previous
studies have often been geographically or temporally limited. Here, using a European-wide dataset, we present a
multidecadal analysis of major meteorological drought episodes on groundwater systems at the continental scale.
Groundwater levels were standardized, and analysed using the Standardised Groundwater level Index (SGl). Cluster
analysis revealed spatially coherent ‘type’ hydrographs across different areas of Europe, and highlighted the
importance of the ‘memory’ of groundwater systems.

Guidance on Assessing Risk to Controlled Waters from UK Land Contamination Under Conditions of Future Climate
Change

Emma Khadun (SoBRA)

Presented on behalf of the SoBRA controlled waters and climate change subgroup who are updating and reissuing
the guidance published in August 2022 (‘Guidance on Assessing Risk to Controlled Waters from UK Land
Contamination Under Conditions of Future Climate Change’) to consider future extreme weather. This poster will
detail best practice on how to incorporate climate change into a conceptual site model from a hydrogeological and
contamination perspective.


https://www.geologicalservice.eu/

Climate Change Mitigation and Adaption for Vulnerable Communities in South Sudan
Groundwater Relief

The South Sudan Enhancing Community Resilience and Local Governance Project Phase Il (ECRP-II) aims to improve
access to services, strengthen flood resilience, and enhance institutional capacity for local service delivery and
integrated disaster risk management. The project is Managed by the Ministry of Finance & Planning with the Local
Government Board on behalf of the Government of South Sudan and implemented by the International Organization
for Migration (IOM).

The IOM have contracted out a Groundwater Relief (GWR) led consortium of 7 organisations (Groundwater Relief,
Arup, Acacia Water, The University of West England, Groundwater Science, University of Reading and the University
of Cardiff) to undertake a range of activities to Support Disaster Relief Response.

Five target counties have been identified for assistance; Rubkona (Unity), Twic East (Jonglei), Pibor (Pibor AA),
Fashoda (Upper Nile) and Duk County (Jonglei).
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About Project Groundwater
Northumbria

In November 2020, the Department for Environment, Food & Rural Affairs , ; understanding
(DEFRA) launched an exciting opportunity for local innovation by inviting lead and response
local flood authorities (LLFAs) to apply for funding through the Flood & Coastal P o
Resilience Innovation Programme (FCRIP). This initiative aims to unite local groundwater‘
authorities, businesses, and communities in a collaborative effort to discover X o floodin

and implement innovative solutions that enhance flood resilience in their 9
areas.

A visionto

Gateshead Council's LLFA team seized this opportunity, successfully preparing
and submitting a bid that led to the creation of Project Groundwater
Northumbria (PGN) in 2021.

Proudly, PGN stands as one of the twenty-five grou_r?dbreaking projects ’ Ny > _ PrOjeCt
sponsored by FCRIP, paving the way for a more resilient future. ! \ ' G (o) nd Qte
- \BEW/ rounaw r
This project will conclude in 2027. Pl Northumbria
B“;artment Environment
for Environment W Agency

Food & Rural Affairs

Flood and coastal resilience innovation programme

Part of the £200m
Flood and coastal innovation programmes
AP\ Project

0 & Groundwater fm Gateshead
AN Northumbria F Council
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e — > Yy a2 4 5
Extract of initial susceptibility groundwater map over parts of
Newcastle and Gateshead created by Project Groundwate Northumbria

Extract of hydrogeological
cross section from the
Gateshead study area - section
crossing the rivers Derwent and
Team valleys

“It is difficult to predict groundwater
flooding.

Groundwater levels are not
monitored in every part of England.”
-www.gov.uk/quidance/groundwater-
flooding



Mine Water Blocks

Mine Water Blocks
(MWBSs) are groups of
colliery mine workings
which have continuous
variation of mine water
levels within the block

PGN has 2 focus areas

each with a group of MWBSs:

- Berwick upon Tweed
- Gateshead

Project
Groundwater
Northumbria

rwick

pon Tweed

km

10

L MWB Number [Name MWB Number |Name
_Alnwick 1 Scremerston-Allerdean 22 Whittonstall
® 2 Unthank-West Allerdean 23 Blaydon
3 Whittle-Shilbottle 24 Central Durham North
4 Hauxley (Onshore) 25 Redheugh
5 Ellington-Lynemouth (Onshore) 26 Lumley
6 Bates (Onshore) 27 Westoe-Wearmouth (Onshore)
7 East Walbottle 28 Manor Wallsend
y ; 8 Throckley (Prestwick-Havannah) 29 East Consett
o 9 Kenton 30 Burnopfield-Marley Hill
- 10 Blenkinsopp 31 Stanley
11 Lambley 32 Central Durham South
12 Haltwhistle 33 Blackburn Fell
13 Bardon Mill 34 Silksworth
14 Fourstones 35 Dawdon-Horden (Onshore)
- |15 Acomb 36 West of Wear
= |16 Throckley 37 Sherburn-Houghall
= 17 Newcastle High Main Unknown 38 Bowburn-Trimdon Grange
R 18 Walker 39 Batts
19 Algernon-Hebburn (Main Pond) 40 South of Butterknowle
= 20 Algernon-Hebburn (Eastern) 41 Winston
= 21 Wylam
- E2K riemouth
= A e 5 2
15 17
i I
“Hexham A % km
ateshead- o s
Legend
e 23 24
e P Y) Geology
= . Permian
... PCM Coalfield
ot EEE = Lower Coal Measures
~ Middle Coal Measures
Yoredale Coalfield
Yoredale
.(_Hgrtlepool
“Middlesbrough
N 41
_Darlington
I
0 5 10

© The Coal Authority. All Rights Reserved. 2022.

Source: Hydrogeological Conceptual Model: North East Mine Water Blocks — Introduction Report




Rising mine water

MWB inter-connections oot

—  Goaf connection Pumped controlled

Controlled by known discharges

Likely recovered, no known discharges

Although Some MWBS are isolated’ many have .......... Narrow barrier / overlap / borehole connection LE“i"gtO"t'h .......................
. . . EE  Dpam (likely intact) Stakeford Dyke ynemou -
known connections with adjacent blocks through peen (unknnun starus o arty e
abandoned mine shafts, roadways etc, which O Can Ay, 2072 s © st J ----------------------------
. . . . Allights reserved Walbottle
may be active or inactive at different water level

thresholds.

Likely overflowing

Jgooaes

Unknown status, likely recovered

Bates

' Kenton [z N Algernon-
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(Prestwick)

Hebburn (East)
Newcastle Algernon-
The figures below lllustrate the potentially ~ Unrecorded || aler 5 Hebburm
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____________ Bowburn-
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v Groundwater Source: Hydrogeological Conceptual Model: North East Mine
Northumbﬂq Water Blocks — Introduction Report
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Mine water level management

During mining, coal seam workings were
pumped to keep them dry. As collieries were
closed, pumping has continued by the Coal
Authority (CA) in collaboration with the EA, to
prevent polluting discharges to surface waters.

Abstractions have been gradually reduced as
‘managed recovery’, with controlled
discharges to the surface.

Source: Hydrogeological Conceptual
Model: North East Mine Water Blocks —
Introduction Report
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Mine water level
responses

Following a period of water level
rebound as abstractions were
reduced, relatively high water
levels create increased risk of
polluting discharges or flooding,
due to combinations of variations
in pumping rate and/or recharge.
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PGN focus study area R

An ‘unexplained’ flood (persistent, and not ;
obviously related to excessive rainfall)
occurred at a site along the Tyne valley, in
an industrial area and also affecting
access roads to the commercially
significant Metro Centre retail area.

Subsequent investigations showed the

likely cause to be the pump at Newcastle

- |

Kibblesworth which had not been N )
operative due to technical reasons. Gateshead Viewpoint of
next slide
This highlighted the deficiency at that - \,Q
time in hydrogeological expertise in Kibblesworth
Gateshead Council, the LLFA. mine water
abstraction
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Flow pathways (systems approach)

A systems approach was used to make a

generic assessment of possible natural
and human-modified flow pathways.

This is being used to help build
guantitative models of pathways from
recharge through mine workings to
surface expression.

It also highlights the interconnected
nature of the physical system, despite
the disconnects in organisational
responsibilities?.

"Parkin G
Briefing: Groundwater flooding — a hidden hazard

Proceedings of the Institution of Civil Engineers — Civil Engineering

https://doi.org/10.1680/jcien.24.00905
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Flow pathways (hydrogeological)

Detailed place-specific conceptual hydrogeological models
help to support flood risk mapping and forecasting, and
design of new monitoring boreholes

Pathways through
, mining infrastructure
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Response catalogue Event dUration s sondr
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There is a lack of historical water level time-series data at
critical locations, with our new boreholes only providing
recent monitoring data.

Frequency
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=

Data from 21 representative sites across the region have
been analysed to provide statistics to support a forecasting
system. In many sites, 2 modes of response were evident —
rapid short term spikes, and standard seasonal responses.
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Groundwater flooding within an urbanised flood plain
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Structure of the talk

- Impacts of groundwater flooding
- Settings for groundwater flooding

- Management and mitigation of
groundwater flooding
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Definition of groundwater flooding

Emergence of groundwater at the ground surface away from
perennial river channels or the rising of groundwater into man-
made ground, under conditions where the ‘normal’ ranges of
groundwater level and groundwater flow are exceeded

®



Definition of groundwater flooding

Emergence of groundwater at the ground surface away from
perennial river channels or the rising of groundwater into man-
made ground, under conditions where the ‘normal’ ranges of
groundwater level and groundwater flow are exceeded
or where anthropogenic influence has caused a rise in base
groundwater levels that has resulted in frequent flooding in
these settings even when groundwater is within its new
normal range

®



Case studies on groundwater flooding in past 5 years




Research topics — past 5 years

Groundwater flooding in coastal areas

Groundwater flooding in karstic regions

Mitigation of groundwater flooding

Climate change implications for groundwater flooding
Mapping of groundwater flooding

Describing impacts of groundwater flooding

Urban groundwater flooding - rebound/importing of water
Compound drivers of flooding (relative importance of gw)
Land use change and groundwater flooding

Minewater rebound

Groundwater infiltration to sewers

Linking models for better event simulation

Rising of groundwater levels in agricultural areas T es, 2021
Economic analysis of damage from groundwater flooding
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Impacts of groundwater flooding

- Water at surface in low-lying areas
« Anomalous springs causing water to flow downslope

— flooding property, transport routes, public amenities
etc

* Inundation of basements and subsurface
infrastructure leading to damage of:

— property, transport network, building structures,
electrical/telecomms systems etc

* Infiltration of groundwater to sewers

— inoperative toilets, overwhelming STW, need to
pump waste from network




Impacts of groundwater flooding

Changes in hydraulic pressures and uplift

— damage to buildings, tunnels, roads and
flood defences

Reduced capacity of retention ponds —
consecutive storms

Impacts on terrestrial ecosystems
— reduced O, in root systems

Damage to agriculture due to
waterlogging




Impacts of groundwater flooding

Impact of polluted groundwaters

— damage to underground structures

— contamination of water supplies & aquatic ecosystems
Mobilisation of legacy pollutants at shallow depths
Inundation of landfills

Long term rising of gwls causing reduced
performance of on-site sanitation

» Economic cost of GWF
— Annual cost - England: £156M (CCC), £530M (ESI, 2016)
— Calgary 2013 flood — C$84.2M (Abboud, 2018)
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Groundwater flooding settings

 Clearwater flooding

* River-driven groundwater flooding
- permeable superficial deposits (PSD)

» Urban groundwater rebound

Improving the understanding of the risk from groundwater flooding in

the UK

D.M.]. Macdonald, J.P. Bloomfield, A.G. Hughes, A.M. MacDonald, B. Adams &

AA. McKenzie

British Geological Survey, Maclean Building, Wallingford, Oxfordshire OX10 888, UK

ABSTRACT: Groundwater flonding has been shown to be a significant component of the risk from flooding
in the UK. Its inclusion within the EU Floods Directive highlights the need to understand more about the
processes that control groundwater flooding and to define the associated risk. In this paper the main ground-
water flooding scenarios are deseribed and the challenges in estimating return periods and mapping risk set
out. In addition, ongoing and recently completed work by the British Geological Survey which aims to im-
prove the understanding of risk from groundwater flooding in the UK is presented.

1 INTRODUCTION

Croundwater flooding can cause significant social
and economic disruption and is a threat in many ar-
cas of north-west Europe. For example, in the first
assessment of its kind in England and Wales, Jacobs
(2004) estimated that 380,000 properties are located
on the most vulnerable formations, the exposed
Chalk of southern England. The scale of the problem
has been recognised by the Department for the Envi-
ronment, Food and Rural Affairs (Defra) which,
through the Environment Agency of England and
Wales (EA), is looking at the establishment of a na-
tional database of flonding from all sources, includ-
ing groundwater, and the extension of its flood risk
maps and warning service to cover groundwater.

The characteristic feature of groundwater flood-
ing events is the relatively long duration compared
with fluvial flooding. Groundwater flooding is de-
fined here as the emergence of groundwater at the
ground surface away from perennial river channels
or the rising of groundwater into man-made ground,
under conditions where the ‘normal’ ranges of
groundwater level and groundwater flow are ex-
ceeded. The impact of groundwater flooding can oc-
cur before water levels reach the ground surface
where there is inundation of building basements and
buried services or other assets below ground level.
Groundwater levels that rise above ground have the
potential to reach low-lying areas protected from
fluvial flooding. Exceptionally large flows from per-
ennial springs or large flows from intermittent or
dormant springs, which also come under the above

definition of groundwater flooding. can cause both
localised flooding in the vicinity of the springs and
down gradient where surface water drainage chan-
nels may not be adequate.

2 GROUNDWATER FLOODING SCENARIOS

There are three scenarios described here for ground-
water flooding. Firstly, long-lasting, often regionally
extensive, groundwater flooding can be caused by
the water table in an unconfined aquifer rising above
the land surface as a response to extreme rainfall
(Fig. 1). This is often referred to as clearwater
flooding. Tt is this form of flooding that has caused
significant damage to properties on the Chalk oui-
crop of southern England in recent years. Flooding
occurs when antecedent conditions of high ground-
water levels and high unsaturated zone moisture
content combine with intense rainfall. In the Chalk
this can cause groundwater levels to fluctuate over
several tens of metres. For example, in the winter of
200001 groundwater flooding was assoclated with
unusually high levels of rainfall: for an eight month
period starting in September 2000, rainfall in south
cast England was 183% of the long-term average,
equivalent to a greater than 100 year return period.
Groundwater levels were already high as there had
been several years” above average recharge. Signifi-
cant flows occurred in dry valleys in localities re-
mote from floodplains. River flow reflected the high
rainfall as well as the contribution from groundwater
discharge. Flows at most river gauging stations
greatly exceeded the long-term averages for ex-



Groundwater flooding settings

 Clearwater flooding

* River-driven groundwater flooding
- permeable superficial deposits (PSD)

» Urban groundwater rebound

» Raised groundwater levels due to land use
change

* Mine water rebound

Sea level rise-driven groundwater flooding

Improving the understanding of the risk from groundwater flooding in

the UK
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ABSTRACT: Groundwater flonding has been shown to be a significant component of the risk from flooding
in the UK. Its inclusion within the EU Floods Directive highlights the need to understand more about the
processes that control groundwater flooding and to define the associated risk. In this paper the main ground-
water flooding scenarios are deseribed and the challenges in estimating return periods and mapping risk set
out. In addition, ongoing and recently completed work by the British Geological Survey which aims to im-
prove the understanding of risk from groundwater flooding in the UK is presented.

1 INTRODUCTION

Croundwater flooding can cause significant social
and economic disruption and is a threat in many ar-
cas of north-west Europe. For example, in the first
assessment of its kind in England and Wales, Jacobs
(2004) estimated that 380,000 properties are located
on the most vulnerable formations, the exposed
Chalk of southern England. The scale of the problem
has been recognised by the Department for the Envi-
ronment, Food and Rural Affairs (Defra) which,
through the Environment Agency of England and
Wales (EA), is looking at the establishment of a na-
tional database of flonding from all sources, includ-
ing groundwater, and the extension of its flood risk
maps and warning service to cover groundwater.

The characteristic feature of groundwater flood-
ing events is the relatively long duration compared
with fluvial flooding. Groundwater flooding is de-
fined here as the emergence of groundwater at the
ground surface away from perennial river channels
or the rising of groundwater into man-made ground,
under conditions where the ‘normal’ ranges of
groundwater level and groundwater flow are ex-
ceeded. The impact of groundwater flooding can oc-
cur before water levels reach the ground surface
where there is inundation of building basements and
buried services or other assets below ground level.
Groundwater levels that rise above ground have the
potential to reach low-lying areas protected from
fluvial flooding. Exceptionally large flows from per-
ennial springs or large flows from intermittent or
dormant springs, which also come under the above

definition of groundwater flooding. can cause both
localised flooding in the vicinity of the springs and
down gradient where surface water drainage chan-
nels may not be adequate.

2 GROUNDWATER FLOODING SCENARIOS

There are three scenarios described here for ground-
water flooding. Firstly, long-lasting, often regionally
extensive, groundwater flooding can be caused by
the water table in an unconfined aquifer rising above
the land surface as a response to extreme rainfall
(Fig. 1). This is often referred to as clearwater
flooding. Tt is this form of flooding that has caused
significant damage to properties on the Chalk oui-
crop of southern England in recent years. Flooding
occurs when antecedent conditions of high ground-
water levels and high unsaturated zone moisture
content combine with intense rainfall. In the Chalk
this can cause groundwater levels to fluctuate over
several tens of metres. For example, in the winter of
200001 groundwater flooding was assoclated with
unusually high levels of rainfall: for an eight month
period starting in September 2000, rainfall in south
cast England was 183% of the long-term average,
equivalent to a greater than 100 year return period.
Groundwater levels were already high as there had
been several years” above average recharge. Signifi-
cant flows occurred in dry valleys in localities re-
mote from floodplains. River flow reflected the high
rainfall as well as the contribution from groundwater
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Recent research on clearwater flooding

Impacts, mapping and mitigation (Becker et al.,
2022)

Flooding case studies (e.g. West Africa: Hado
et al., 2021, Brisibe et al., 2021)

Linking models to improve flood simulation
(Collins et al., 2020; Pena et al., 2021)

Incorporating improved geological
representation (Kearsey et al., 2023)

Natural Flood Management and groundwater
(Badjana et al., 2023; Barnsley 2022; Collins et
al., 2023)

Karst and groundwater flooding
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J/ Lambourn

.;ar; — |
J o 100 200m

0.4 0.8
Inundation (m)




Clearwater flooding — karst studies

* Ireland

« Also

automated approach with remote sensing to map
flooded areas (McCormack et al., 2022)

modelling GWF in lowland karst using pipe network
models (Gill et al., 2021)

forecasting flooding using machine learning — flood
vol., rainfall, tide levels + gwls (Basu et al., 2022)

impact of CC on flooding and ecohydrology —
median/extremes significantly greater, flooding
season later (Morrissey et al., 2023)

USA (Pefia et al., 2022); Slovenia (Ravbar et al.,
2021); Indonesia (Cahyadi et al., 2019); France o i
(Erguy et al., 2022) R R AR R R A @




River-driven groundwater flooding
- permeable superficial deposits
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Recent research on river-driven PSD flooding

issues with defences to protect from R-D GWF and
associated issues (Riha et al., 2023)

exploring options for reducing flood risk: pumping
boreholes, drains, barriers to groundwater flow
(Kumar & Yazdan, 2022)

recognising R-D GWF in designing flood reduction
measures and estimating flood costs - Calgary
(Bryant et al., 2022)

investigating controls on GWF in New Orleans:
drainage-induced land subsidence; PSD
hydrogeology (Yang & Tsai, 2020)

river

FPM
N I { _terrain
. o aquifer v
. , E
FPM - levee _.plezometﬂclevel
p—— _/_ terrain

opsoil laye

7 lobs_oril'la'yér' 7 _-_

=T

piezometric

ain Ie_yel

g building

aquifér

rrrrr EPM

impermeable subsoil =
v

material ;
|. qu{mut terrain
T =l 1 } B A - P | f
-~ s Al — ! s ) T wa

' seepage . I';;a}cégé'ﬁ =3




Recent research on river-driven PSD flooding

* issues with defences to protect from R-D GWF and
associated issues (Riha et al., 2023)

* exploring options for reducing flood risk: pumping
boreholes, drains, barriers to groundwater flow
(Kumar & Yazdan, 2022)

* recognising R-D GWF in designing flood reduction
measures and estimating flood costs - Calgary
(Bryant et al., 2022)

* investigating controls on GWF in New Orleans:
drainage-induced land subsidence; PSD .
hydrogeology (Yang & Tsai, 2020) showsfor &y

Flap Floatsupto
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Recent research on river-driven PSD flooding

* issues with defences to protect from R-D GWF and Ao
associated issues (Riha et al., 2023) 4

* exploring options for reducing flood risk: pumping
boreholes, drains, barriers to groundwater flow
(Kumar & Yazdan, 2022)

* recognising R-D GWF in designing flood reduction
measures and estimating flood costs - Calgary
(Bryant et al., 2022)

* investigating controls on GWF in New Orleans:
drainage-induced land subsidence; PSD
hydrogeology (Yang & Tsai, 2020)




Urban groundwater rebound

Urban abstraction increases with
growing population and industrial use

: HoD | South
Groundwater levels decline as X A R £
abstraction greater than recharge
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Recent research on urban rebound

* Naples

— Rises of >16m occurred since 1990s - flooding of
basements, agricultural soils, archaeological sites,

— research on ground uplift (Coda et al., 2021), machine
learning to identify areas most at-risk to GWF (Allocca
et al., 2021)

* Milan (Sartirana et al., 2022)

— data-driven approach in Milan to identify at-risk areas
to support urban planning — focus on u/g car parks

* New York City (Rosenzweig et al., 2024)

— GWEF due to urban rebound already been experienced
in many neighbourhoods

— USGS study to monitor, investigate and model
. . . 444000 446000
groundwater flooding in the city cumulative surface uplft (rm)  (C250)
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Recent research on urban rebound

* Naples
— Rises of >16m occurred since 1990s - flooding of Milan Municinalty
basements, agricultural soils, archaeological sites, "\, | o Yy
— research on ground uplift (Coda et al., 2021), machine | >~ )
learning to identify areas most at-risk to GWF (Allocca | ==~ o
et al, 2021) 100 l s 5 P | el V_l-__. I st
* Milan (Sartirana et al., 2022) I |
— data-driven approach in Milan to identify at-risk areas « | |5
to support urban planning — focus on u/g car parks |, =————kn ki
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— GWEF due to urban rebound already been experienced
in many neighbourhoods

— USGS study to monitor, investigate and model
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Recent research on urban rebound

* Naples
— Rises of >16m occurred since 1990s - flooding of ~ Mis@esiom o cmmesmen ¥/

B Groundwater <10ft. Below Surface

basements, agricultural soils, archaeological sites,  Fuwom

— research on ground uplift (Coda et al., 2021), machine
learning to identify areas most at-risk to GWF (Allocca
et al., 2021)

* Milan (Sartirana et al., 2022)

— data-driven approach in Milan to identify at-risk areas
to support urban planning — focus on u/g car parks

* New York City (Rosenzweig et al., 2024)

— GWEF due to urban rebound already been experlenced
in many neighbourhoods

— USGS study to monitor, investigate and model
groundwater flooding in the city 2\



Urban rebound - West Africa

- Dakar

— groundwater rebound in low-lying
peri-urban areas that also
accumulate surface runoff

— highly populated marginal land
with limited storm water drainage
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Land use change and rising groundwater

* Wisconsin - Kastelic & Loheide (2023)
— case studies of lake level rise (e.g. ~5m in 70 yrs)

— displaced residents, flooding of critical
infrastructure, damage of agricultural lands

— shift from historical oak savannah and tallgrass
prairie to agricultural lands reducing ET + increase
in precipitation amounts increasing recharge

— solutions?: returning agricultural areas to native
vegetation or introducing high-water use crops

* Deng & Bailey (2020): Colorado - increase use of groundwater for irrigation to
reduce GWF
- Houspanossian et al., 2023: S.American plains - GWF due to expansion of agric.

— positive effects: buffering crop production during droughts - appears to compensate for
negative effects of reduced sowing area faae)



West Africa — land use change

» Scanlon et al. (2022)

— assessed spatiotemporal variability in water
storage and related controls (climate, human
intervention) in major African aquifers

— GRACE: rising TWS trends were found in
aquifers in western Africa (23—-49 km? over 18
yrs), attributed to increased recharge from land
use change and cropland expansion

— ‘increasing groundwater levels in western
Africa will need to be managed because of
locally rising groundwater flooding’

 e.g. Niamey (Hado et al., 2021); secondary
cities in Senegal

5 ) 5 0 5 LLUBS L R
MRl

GRACE: trends in TWS, 2003-13 (Werth et al., 2017)



Minewater rebound

- After colliery closure, cessation of dewatering
results in progressive rise of groundwater and
flooding of old workings and surrounding rock

* Impacts of acid mine waters
— surface water pollution
— flooding of agricultural, industrial, residential areas
— inundation of landfills
— overloading and clogging of drains and sewers
— pollution of overlying aquifers
— ground deformation due to renewed mining
subsidence and reactivation of faults
* Much of the research is related to cessation of
coal mining in China and Germany

Operation H

Post-Closure

Dry Workings | Flooded Workings
1

o
Treatment |

INAP web, 2024




Groundwater-related flooding in coastal areas

Natural
spring Localized

Storm drains expansion flooding Vertical SWI

Natural spring  _e. e o . Sea-level rise

——— T i
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Coastal erosion

Reviews: Richardson et al., 2024; Zeydalinejad et al., 2024;
Habel et al, 2024; Green et al., 2024; Rozell, 2021 2\



Groundwater-related flooding in coastal areas

- Sea Level Rise (SLR) of
20cm occurred globally
over last 140 yrs

* past century, rate of rise
of 1-2mm/a in most e :
regions, has doubled N -\ -A- - - -
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Habel et al, 2024 — globally, 1546 functional urban areas =N
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Groundwater-related flooding in coastal areas

- Sea Level Rise (SLR) of
20cm occurred globally
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Modelling threat of coastal groundwater hazards from SLR
— Befus et al., 2020

simulated a range of SLR using single-
layer MODFLOW models with constant
heads at coast (no-flow elsewhere)

no change in recharge or abstraction
low-lying areas infilled with drain cells

1m rise — areas prone to flooding
expand from 650-970m by a further
~50-130m inland

coastal topography key controlling factor




Groundwater flooding in coastal regions

urban coastal zones often host large amounts of buried chemical contamination
(Jiao & Post, 2019)

on site sanitation: Honolulu, Hawai‘i - ~90% cesspits compromised during present-
day king-tide events - contamination of coastal groundwater potentially pervasive
(Habel et al., 2020)

periodic wetting/drying causing: increase in salt concentration around
water/wastewater/storm networks — accelerated corrosion; degradation of building
foundations — impacts hard to detect (Habel et al., 2024)

culturally sensitive areas: e.g. in 25 Caribbean island nations >20% of cemeteries
within 100 m of the coast (Mueller & Meindl, 2017)

increase liquefaction susceptibility in earthquake-prone regions (Grant et al., 2021)

compound flooding particularly severe in atolls (Tajima et al., 2023) and sand

barriers (Housego et al., 2021) (o)
&/



Management
and
Mitigation




Mitigation of impacts — household and local level

- resilience measures — tiles,
electrics, tanking

- pumping for households or a
number of buildings

- sand bags, where flows occur
downslope

- local drainage systems




Mitigation of impacts — municipal level

Drainage & land raising (Thompson et al, 2021)

Installation of backflow valves and sump pumps (Bryant et al., 2022)
Management of river levels (e.g. Oxford Flood Alleviation Scheme)

Barriers to subsurface flow from rivers (Riha et al., 2023)

Fluvial flood defences in combination with pumping (Kumar & Yazdan, 2022)
Extension of drainage network in coastal regions (Morgan, 2024)

Upstream Drivers (clearance) Downstream Drivers (fall)
7‘('\“\‘ F‘Q“\,‘
' ) Treatment Basin
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‘ = Stormwater Drains '|l; ll l‘
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Mitigation of impacts — waste & water quality

eg,

* pump sewage at vulnerable locations
* improved sewerage systems:

— from OSS to piped

— sewerage only

— lining of sewers

* monitoring to optimise where to repair
(Thames Water, 2021)

* Hoboken, NJ - as sewers repaired, water

table rises (Su et al., 2022),

leaky sewer
system

- remediation of legacy landfills

* regular assessment of building
state - consider materials used

sealed sewer
system




Mitigation of impacts — natural flood management

Reduce recharge to or increase discharge from aquifer through increasing ET

Barnsley, 2022: NFM in gw-dominated catchments

— River Test - increasing tree cover, revegetating river
channels, installing woody debris dams

— flood peak reduction averaging 5% but no reduction in

flood duration
Collins et al., 2022

— Upper Thames - woodland planting & conversion of

arable to grassland

Flow mi/s

— 1-6% reductions in winter peak flows with broadleaved

— large-scale spruce planting potential to significantly
reduce winter peak flows BUT impact on summer
mean flows (e.g. 12% reduction in July mean flow)

10 ~
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Mapping & data-driven approaches

- Merchan-Rivera et al., 2022

— Bayesian-based Framework to create risk maps
based on MODFLOW modelling using observations
from a small flood-prone area of Germany

* Liu et al., 2021

— ML applied to GWF of sewer networks in Hoboken,
USA to optimise repair. Water table, soil type, pipe
size/shape/material + infiltration rate measurements.

- Bosserelle et al., 2023

— dense network of boreholes in Christchurch, NZ.
Data-driven analysis - spatial interpolation,
autocorrelation, clustering, cross-correlation and
trend analysis. Primary feature - proximity to tidal
rivers and their correlation with tidal signals




Groundwater flood early warning systems

Broughton 15-day forecast

UK (EA/FFC)

— EA GWL monitoring network linked to Flood 234
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CLIMATE CHANGE AND ENERGY

How rising groundwater caused
by climate change could
devastate coastal communities

Higher sea levels will push the water table up with them, causing flooding,
contamination, and all manner of unseen chaos.




CLIMATE CHANGE AND ENERGY

How rising groundwater caused
by climate change could
devastate coastal communities

Higher sea levels will push the water table up with them, causing flooding,
contamination, and all manner of unseen chaos.

‘managed retreat may be the only practical option’ (Rozell, 2021)




Thank you
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* An intermitted chalk stream winssor - From Source
* Rises in the North Downs and flows through Caterham and Purley i to
e Joins the Wandle in Croydon ' Croydon

Royal Oak
Pond

‘Coulsdon
Bourne
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,
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Drawing after E F Bishop, 1968

The Caterham Bourne - Coulsdon Heritage Facebook group Bourne Society, 2002. A Celebration of the Bourne. The Bourne Society.
https://bournesoc.org.uk/bslivewp/wp-content/uploads/A-Celebration-of-the-
Bourne-Web-fileCS.pdf



The Bourne

* History of extreme flooding
* Parts of Caterham, Purley and Croydon underwater for
many months

2000-01 flooding Twe=="""
https Ry ridgeific nt.c )23/12 -the s ‘
of-thesi it e ding-




“Ordinarily the Bourne is a tiny
stream,...but every to
an extraordinary manner, rushing
along its narrow bed like a
torrent...invading the dwellings of the
inhabitants of the low-lying quarter
of Croydon known as Old Town. This
singular phenomenon has been
observed for centuries, and yet its
cause is still an
which nature guards most jealously.”

Croydon to the North Downs; a Handy Guide to Rambles
in the District by Thomas Frost, 1881

Testing the Bourne or “ Woe " River.
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Mr W W Swatland testing the waters at his
pub, the Rose and Crown, 1904

https://midweekwayfarers.blogspot.com/2021/01/the-wandle-croydon-and-caterham-bourne.html



MR [ B A N YR ETA I womere watere ranne hugely with suche abundaunce of water that
nevyr manne sawe it renne so muche afore this tymes i eJul-g-R uoe /(o (=R s IR el R ol (=129 )4
Englyschmen, when thei dyd fyrst inhabyd this lond, also sone as thei see this watere renne, thei knewe
wele it was a tokene of derthe or of pestylence or of grete batayle; wherefore thei called it womere (for
we as in Englysch tonge woo and mere is callede watere, which signyfieth woo watere;) and this womere
is vii myle from Sent Albons at a place callede Markayat; ... ... and another at Croydone in Suthsex that
when it betokeneth batayle it rennys foule and trouble watere; and whenne betokene the derthe or

pestylence, it rennyth clere as any watereM RIS He-RI R Llal-Rse Il RigelV] ol l=Xelale B (o JVI=R" ol (=11 -D0

- John Warkworth’s Chronicle, 1473
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705 flow gauges
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6 — 8 year Cycle
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6 — 8 year Cycle

705 catchment rainfall
records
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Questions...

1. What drives these cycles in [ElIEURE LI ?

2. Why are they in groundwater records?



What drives these cycles

Tadrainfall recordsky

North Atlantic Oscillation

L

kip “Blocking” \/ 4
Warm

H

NAO Negative Mode NAO Positive Mode

National Oceanic and Atmospheric Administration. (July 22, 2016). “NAO Modes”



What drives these cycles

Tadrainfall recordsky

NAO Index
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What drives these cycles

Tadrainfall recordsky

NAO Index
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Why are they in
groundwater records?
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Groundwater Teleconnection



Reconstructed Cycles

Rust et al, 2021.
Rust et al, 2019.

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Date



Reconstructed Cycles
GW Floods

1960
1968
1985-86
1993-4
2001
2013-14

Rust et al, 2021.
Rust et al, 2019.

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Date



Reconstructed Cycles
Drought Periods

Rust et al, 2022
Rust et al, 2021
Rust et al, 2019

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Date



Multi-year NAO Cycles can be used to m GW Drought

(G AL @14 | K\ 1=K (Thames / Chiltern Chalki)
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Rust et al, 2024.



Multi-year NAO Cycles can be used to m GW Drought

Forecasting Groundwater Drought coverage (UuEluE AL I N, FE ) Recorded Drought Index
5 ¢——o Simulated Drought Index
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Rust et al, 2024.



Multi-year NAO Cycles can be used to m GW Drought

Recorded Drought Index
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Rust et al, 2024.



Summary...

IRV VBT daYd (SR R R\ IAX®dinfluence groundwater

in the UK
* Theirinfluence s over time
e Sufficient dependency for [oJg=lellail=ReETElelaY (using

machine learning)



Further Reading...
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Who we are

Largest Water Only Supplier in the UK

We distribute potable water to ¢3.9 million
customers in the South East

3 geographical regions (Central, East and
Southeast)

Daily supply of 250 Megalitres (Million litres) per
day on average

Supply is predominantly groundwater based
Area of serious water stress
WRMP — strategic plan

DMP - operational plan

60% GW = 500 MI/d 80% GW = 24 Ml/d
40% SW = 320 MI/d 20% SW = 6 MI/d

i
Lee

Bishop's stortford () stansted
Pottersheath

Harpenden welwyn
Garden city Hertford

Hemel U m
Hempstead StAIDans: §Roestock '

Misbourne (olne! Puese=

Dover

Key

@ Airport

. Affinity Water Offices

100% GW = 42 MI/d
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Challenges for Water Resources Management

* Increasing Population
« Climate Change
* Mains Leakage

« Per Capita Consumption (PCC)

oF
2o P W o W LWy “etmow
”AJ:? -LE )-8 _ Leafiet | @ OpenStreethiap contributors, CC-BY-SA,

Increase in total demand (Ml/d) from January to October 2020 due to Covid-19 policies

Current UK average PCC
(litres per person per day)

‘I 40 Ofwat, 3-year average
based on AR23

Current Affinity Water area PCC
(litres per person per day)

- based on AR24

PCC target to 110 1/h/d by 2050
Leakage reduction to 50% by 2050

Affinity



A conceptual schematic of the Chilterns Chalk
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Drought definition & our Drought Triggers
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Downhole camera
survey
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Drought Triggers and River Baseflow
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Our Drought Management Plan

A statutory operational plan, links to WRMP LoS

Informed by operational and industry experience,
regulator guidance and our customers and stakeholder

priorities

Designed to manage a drought of up to 1 in 200 year

severity

A more extreme drought would trigger the Emergency
Plan, and would likely involve regional management

No drought is the same, plan is designed to be adaptable

Drought Management Action Frequency pre 2024 Frequency post 2024

Temporary Use Ban restrictions
Demand-side ordinary drought orders
restricting non-essential use [also
known as non-essential use bans)

Category 1 supply-side drought
permits/drought orders

Category 2 supply-side drought
permits/drought orders

Emergency drought orders

1in 10 years

1in 40 years

1in 40 years — 1in 100 years

> 11in 100 years

Deemed unacceptable but could

be used for short periods of time in
localised areas as a result of a civil
emergency

1in 10 years

1in 40 years

11in =200 years

1in >200 years

Deemed unacceptable but could
be used for short periods of time in
localised areas as a result of a
civil emergency

AffinityWater

Drought Management
Plan 2023

Affinity



Drought Plan Worked Example

Groundwater level (mAOD)
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Drought Permits
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2017-2019: The Groundwater Drought

Groundwater Level (mAOD)
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2022 - The Surface Water Drought

Apr May Jun Jul Auwg Sep Oct MNov Dec Ian Feh Mar Apr
2 22 22 22 2 : . 2 23 23 23 3

Groundwater levels (mAOD)

« Definition of Resilience

* |In a 2022 type drought, which sources of
supply would be more resiliente

« What is the role of groundwater going
forward?

« What about the Sustainability Reductions?
Should there be cessationse

Affinity Water




The other side of the spectrum - Floods

We operate almost 250 boreholes across
over 100 pumping stations

The majority of these are in river valleys,
where groundwater levels are close to
the surface

This means that some locations and sites
are prone to being inundated by rising
groundwater levels, following prolonged
above average rainfall, usually during
the winter period

Such events occurred in 2001, 2014,
2021 and 2024, following very wet
winters

160
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Monthly Rainfall {mm})
= (=] «© S
(=] (=] (=] Q

nN
o

o

413 mm

2000/01

MORECS monthly rainfall totals
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2023/24

Affinity Water



Where are we now? Out of the woods?

98

16 IT JUST ME OR

S

a
o)
<
£
w
2
3 , I r,
% “*x’;N‘\'],’N"\'Il"“"ﬂi”""}'/""" o i ) [ o Yo i l,‘.l.w i :'N“‘J'VT’.I Ve Lo “"?.‘.“l/“v
o ' B 4 A IR R R R
il A A A B ‘AR RR i
= Y Y W 'a;ll ¥ U w '\5 {‘1' o W i
= 1' I U ) | yiv N y ¥
g !
-
0
]
92
30
88
0 oy o> o O & o o0 O 5 ™ © &) N o> K3 K Q> >
) /\\\q \@ /\\\9 \@ ’\\@ \\9 ,\\'»°’ \\9 «\w@ \m@ «\w@ \,@ «\@ \,9 «\,@ \,»o «@Q \,-LQ
F F F ¢ F & F ¥ W Y
I\ 1\ I\ I\ N\ QY QY N N\ QY )¢ Q¥ N\ )¢ I\ Q \% \% I\

[ o
mEmm Environmental Stress Drought zone 1 Drought zone2  mmmmm Droughtzone3 M Droughtzone4 ——ILTA = Groundwater level Aﬁlnltywater



Flooding impacts

* Inundation of the site, making access
difficult and creating trip hazards

« Boreholes going artesian when pumps
stop (if headworks are not sealed)
potentially flooding below ground
chambers and re-introducing the
flooded water into the borehole upon
pump start up (WQ issues)

« Floodwater damaging low lying
equipment

« Potential water quality implications for
the raw water which may impact
treatment capability (e.g. pollutant
mobilisation, tfurbidity increases or
changes that adversely impact
coagulation)

Affinity



Flooding impactis




Impacts during flood conditions

« Rainfall patfterns (amount and intensity)
determine groundwater flooding occurrence
and duration

« GW abstraction does not have a widespread

effect as cone of depression shrinks during high
GWLs /v ; G e e i 95 s

 The WQ in PWS sources can be at risk due to
sewer overflows, so appropriate measures need
to be taken to mitigate this risk

 Issues with high nitrate concentrations that
typically occur after groundwater levels peak,
due to travel time in the aquifer and “piston

effect”. : i | NN DAPDVIMN

Affinity



Flood zones 1 & 2

/one 1: We need to operate at a heightened state of alert

Issue fortnightly groundwater level briefings with risk
assessments

Undertake a monthly check of production site groundwater
levels using alarms on telemetry

Notify Ops teams when GWLs reach 0 mBHP in non-
pumping conditions

Undertake checks to ensure headworks are sealed at high
risk sources

Zone 2: Groundwater flooding is likely

Issue weekly GWL briefings with risk assessments

Form an incident feam to monitor the situation

Undertake a fortnightly check of production site
groundwater levels using alarms on telemetry

Run pumps 24/7 if required and make sources baseload
Reconfigure supply network

98.5 SN

Environmental Stress Drought zone 1 Drought zone 2 wum Drought zone 3
mmm Drought zone 4 —LTA —e—Groundwater level — =40 % prediction
— —80 % prediction = =100 % prediction = =120 % prediction 200 % prediction
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Conclusions & Recommendations

« Droughts that have different characteristics (magnitude, duration)

« Extreme events that seem to occur more frequently

« Changing climate affecting both supply & demand

 Need to maintain & enhance resilience

 New sources of supply and fransfers to balance
GW reductions where required

- Adaptability is key to weather extremes

« Conjunctive use of GW & SW to allow optimisation

* Flexible abstraction licensing regime would be key

Too little water Comfort Zone Too much water

Affinity




Thank you for listening — Questions?
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A ARCADIS

Agenda

1 Water System Analysis

...Horse Traits?

2 Example 1: Drought 2018

2018: Forecasting ground water recovery

3 Example 2: Storage Deficit

Is ground water level a good predictor for storage capacity?
Smart (ground water based) management to prevent flooding

4 Overall Conclusions

The importance of fully understanding the groundwater system



A ARCADIS

1. Water System Analysis
Horse traits?

i v ; ] v .
o f i g o
{5 - 8 1 , ) /
:i \ I\ 11 \ o \ v ° s ,\r A / [ \
- - - - - = - ~ - -
Walk Trot Canter Gallop

Several analyzing methods and most ground water models are validated for ‘Normal Circumstances’
During extremes (Drought, Severe Precipitation), other processes apply!

Theo N. Olsthoorn (Emeritus Professor TU Delft): ... compare this with horse traits... Using a common model will misfit during extreme circumstances because of
neglecting important physical processes.



£ ARCADIS
1. Water System Analysis

Example extreme weather event 2010

The culvert is dimensioned for normal up to high discharge...

11.00
= Hpredict

10.80

[y
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(2]
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2
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Waterheight (m amsl)

10.00

9.80

0 0.2 0.4 06 08 1
Discharge [m3/s]

© Arcadis 2022
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£ ARCADIS
1. Water System Analysis

Example extreme weather event 2010

... but during extreme discharge, the river floods the road.

This also means that water levels do not rise any
further. The normal Q - h relations is no longer valid

11.00
——— Hpredict —@— Hmeasured
10.80

10.60

10.40

10.20

Waterheight (m amsl)

10.00

9.80

0 0.2 0.4 06 08 1
Discharge [m3/s]

© Arcadis 2022
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A ARCADIS

2. Example 1: Drought 2018

After sunshine comes... Drought!
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2. Example 1: Drought 2018

After sunshine comes... Drought!

On average: ~100mm (deficit)

Cumulative potential precipitation surplus: P — Et,, In 2018: ~300mm (deficit)
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Deficit (mm)

0

2. Example 1: Drought 2018

After sunshine comes... Drought!
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2. Example 1
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2. Example 1: Drought 2018

Block
pulses

A ARCADIS

System
Input Output

uonpaipaid

Moise

T
Residuals
figure 2.10: Sources and cffects of noise in modcls of (linear, open) systems.

Jos van Asmuth (2012): Groundwater System ldentification through Time Series Analysis

© Arcadis 2022

Groundwater
system
Impulse —p Groundwater
response level
—>

figure 2.14: Transformation of input to output in case of an exponential impulse response and Hhree
Block pulses of different height and duration.

22 November 2024 10



Groundwater level (m-+ref)

Rise (m)

Rise (m)

2. Example 1: Drought 2018
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A ARCADIS

11



Groundwater level (m+ref)

Residual {m)

2. Example 1: Drought 2018
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A ARCADIS

1 Explained Var (%) 82.03

I 2 Mean Abs Error (cm) 14.5

'3 RMSE (cm) 192

|4 Drainage level (m) 129

5

I 6 Factor Parameter [2*sdev

|7 PREC MO 7494 28
'3 PREC MU 168.0 64
:9 Evaporation factor 1.10 0.04
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T

Residuals versus Observations

12
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2. Example 1: Drought 2018

Ground water level (MAOD)
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A ARCADIS
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A ARCADIS
2. Example 1: Drought 2018
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A ARCADIS
2. Example 1: Drought 2018
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£ ARCADIS
2. Example 1: Drought 2018

Conclusions

The extreme drought resulted in lower ground water levels and ground water reserves.

— The forecast indicated a dry to very dry start of the next growing season, even after wet
winter conditions!

16
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3. Example 2: Storage Deficit -

SATFWATER

1. Model (now casting) 2. Interpretation and presentation 3. Accumulation (fore casting)

Frequency of exceedance "nat"

Percentage gebied (%)
R R ERERERE

113
Stijghoogte

MODFLOW

22 November 2024




3. Example 2: Storage Deficit
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3. Example 2: Storage Deficit —/
Is ground water level a good predictor? ATJWATER

50
_________________________________________________________________________________________________________________________________________________________________________________________________ -
................................................................................................................................................................................................. >
_________________________________________________________________________________________________________________________________________________________________________________________________ [7)
100 e
................................................................................................................................................ l........—lw.f % |
. 1 Space In
e - 4 > c bucket
é 150 g
—_ i PP B el —
= | Storage
A o Deficit
1) 200 ’l‘
2 g
o <
)] &
250 & Summer o+
B Winter
........................................... /
..................................... B  ——————
300 y 4
3.10 3.20 3.30 3.40 3.50 3.60 370

© Arcadis 2022 GI‘OU n d Water Ievel (MAOD) 22 November 2024 19



A ARCADIS

3. Example 2: Storage Deficit
Conclusions

Is ground water level a good predictor? NO

«  With a combined ground water model (MODFLOW) and unsaturated zone model
(MetaSWAP), storage deficit can be calculated (now casting)

- Better results are established when using high resolution (spatial and temporal): radar and
satellite data

*  The now casted storage deficit is a good measure for the ability to store a precipitation
event. In combination with a flow model, active measures in water management can be
taken.

- When the weather forecast for tomorrow is 60mm, is it useful to lower the weirs or
turn up pumping stations?

20



A ARCADIS
Overall Conclusions

: L / k
Always remember the "Horse Traits'’! i [\

- first fully understand the hydrological system during common and rare circumstances

Use suitable instruments (e.g. models) and validate on specific (extreme) events.
- More than normally explain the results in bandwidths and probabilities.

Use the best data available, especially for the input that matters the most.
—> during extreme events: Precipitation, evaporation, ....

- Climate is changing: this means that current extreme events happen more often and

new circumstances will occur.
—> understand the hydrological system (impulse, response, ...). Reproduce events, now casting.,. Fore casting

21



Design & Consultancy
for natural and
built assets

A ARCADIS

Any questions?

WILCO KLUTMAN
Senior Hydrologist

T. +31(0)6 2706 07 17
@: wilco.klutman@arcadis.com




GeoSmart

Information

Towards a more complete flood risk
model for Britain: The role of
groundwater

Mark Fermor

Contact: +44 (0)7976 800730 | markfermor@geosmartinfo.co.uk | www.geosmartinfo.co.uk



G GeoSmart Datchet near Windsor Berkshire February 2014

Information

© Ben Cawlthra'LNP



GeoS Cross section showing groundwater flood
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G GeoSmart Rjver driven groundwater flooding

Information
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GeoSmart Groundwater driven sewer and drain
g1 |nformation ﬂOOd“"]g

Runoff enters drains and
combined sewers
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GeoSmart Groundwater flooding

Information
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Groundwater

flooding starts

-1

vy

100

~—— 2000/01
s, N — 2013/14
— 2002/03
\
—— 1994/95
0 50 100 150 200

Days after peak water level




Information

(G GeoSmart  Groundwater driven flooding
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Map shows Environment Agency river flooding zone 2 (aqua) and zone 3 (blue)

Contains Ordnance Survey Data (c) Crown Copyright and database right 2024
(c) Environment Agency copyright and/or database right 2024. All rights reserved.

Map shows GeoSmart GW5 groundwater flooding risk zones from high (red) to low
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GeoSmart

Information

Stage and flow forecasting — Cirencester gauge

R. Churn stage and flow at Cirencester are strongly correlated to groundwater
~ lewvels at the Hare Bushes borehole
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GeoSmart

Information o

3

Flow forecasting .
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G GeoSmart River Thames naturalised flow at Kingston

Information
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GeoSmart

1Information

Groundwater - predictable
long duration flooding

Groundwater flooding is of significantly
longer duration, months, than other types of
flood and causes significantly (x2.5) more
damage than for flooding from other sources
at similar depths.

A Groundwater flood risk forecasting model
can provide advance, > 30 days warning of
when groundwater flooding will occur and
when antecedent conditions will increase risk
from other flood sources.
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G GeoSmart

for o Baseflow effects on flooding

River Churn at Cirencester (84 km2, BFI=0.91) Rea Brook at Hookagate (178 km2, BFI = 0.51)
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G GeoSmart

Information
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G GeoSmart

Information

Groundwater levels and STW flows correlation
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Information

Client portfolio data
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FloodSmart Analytics

£S220N
GeoSmart | | Search Map History Batch Search About demonstrator@geosmartinfo.co.uk ~

Information

Contains OS data © Crown copyright database rights 2022 | © Mapbox © OpenStreetMap Improve this map
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- GeoSmart rrent estimated risk for homes in Britain

Information

Flood source % of GB properties Average annual loss Properties atrisk,
within areas at risk contribution where losses are
exacerbated by
groundwater
Rivers (defended) 1.8% 23% 78.7%
Groundwater 3.2% * 13% -
Surface water 14.5% 53% 15.0%
Coastal (defended) 0.5% 11% 16.2%

* Groundwater flooding does not impact all properties within risk zones because it is often mitigated by building design or natural and
artificial drainage systems which act to lower water tables



GeoSmart

Information
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% commercial properties in Britain at risk from each flood source and
proportion at risk of additional losses from groundwater

River flooding Groundwater flooding Surface water flooding Coastal flooding

™ % of properties where losses exacerbated by groundwater



(G GeoSmart  Typical AAL at residential property

Information

Homes inriver flood risk areas and those also in groundwater flood risk areas
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GeoSmart Climate change

Information

Future climate scenarios effect on AAL for Commercial Property
in GB

Multiple of 2020 Average Annual Loss

2020 2020 2040 2050 2060 2070 2080

Year
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GeoSmart Joint Probability

Information

P(A,B) = P(A) x P(B)
High permeability catchment floods result from two events.

Event A = groundwater recharge leading to high baseflow over days
and weeks

Event B = the storm that leads to rising limb of river hydrograph over
hours and days, coinciding with Event A at vulnerable river setting.

Groundwater frequency analysis combined with traditional flood
hydrology quantifies risk.

A coincidence of 100 year events could lead to catastrophic

unprecedented flooding.



. ICéeoS_mart Flood and Water Management Act
ntrormation 201 O

“local flood risk” means flood risk from—
(a)surface runoff,
(b)groundwater, and

(c)ordinary watercourses.




GeoSmart Conclusions

Information
In high permeability catchments floods result from two events
Event one is the groundwater priming the catchment for future storms, and
event two is the storm.

Groundwater is not local flooding. Itis a core and integral part of the
catchment flow system.

Floods are very significantly primed by groundwater conditions and it helps to
consider floods result from two independent events.

Groundwater driven flooding often lasts much longer and this increases
damage on average 2.5x other flooding.

Flood risk assessment based on all four main sources of flooding brings a more
complete flood risk model that delivers increased forecasting ability, better
estimate of duration and costs of flooding.
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Thank You.




Quantifying floods and droughts in rapidly changing
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Hydrological extremes are increasing in their frequency, severity
and duration

North
York Moors

Snowdonia
N.P

n Jo/ 8\ = =
DA A AN R TS
Q/ —
4— =AOAC =)
L& / =) - N =
Bannau .;\:A =
Brycheiniog L
Swansea i
Abertawe Cardiff A
Caarduc/®\/'
/o

A 2024 Storm Henk Flood
A Warnings

22 Drought

© Sentinel 3, ESA © Environment Agency




Catchment-scale hydrological modelling and analyses underpin
the management and sustainability of future water resources
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Yet, catchments are

(increasingly) interconnected
across wider water systems

RAPID
2023

Solid line = water transfers
Dotted line = connection
Circle = source
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Quantifying floods and
droughts in rapidly
changing human-water
systems

1) How do humans impact river flows?
2) Building integrated hydrological modelling frameworks

3) Where do we go next?



vy
Complex network of ‘
reservoirs, abstractions and
wastewater returns

8.7 million ML/year abstracted
2.5 million ML stored in reservoirs

75% total volume abstracted
—_— is from surface waters

= 60% total volume abstracted
#O i for public water supply
)

4 Wastewater Returns



Significant component of flow regime and varies spatially

Groundwater Abstractions (-) Surface Water Abstractions (-) Wastewater Discharges (-)
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Water resource management practices affect baseflow

Groundwater
abstraction is the
most influential of
these practices, with
a positive correlation
between abstraction
and baseflow

Linear Regression

GW Abstractions [nm/day]
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Wastewater discharges increase flow magnitudes and reduce

flashiness
é m,j JMM\«JMUMJ* UW\*MW '

ISR SOBTAMO N 30058 Urban 78% Discharges 0 mm day”

Coxon et al (2024) Wastewater discharges and urban land cover dominate urban hydrology signals across England and Wales



Reservoirs significantly alter the catchment water balance
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Quantifying floods and
droughts in rapidly
changing human-water
systems

1) How do humans impact river flows?
2) Building integrated hydrological modelling frameworks

3) Where do we go next?



Developing water supply reservoir operating rules for large-scale
hydrological modelling

w 56014
4 { — Observed No Reservoir — Reservoir 2'5'@%
0.0 '
2_
L ) !L Idl \ I Ilh II -2.5
0_ e W W
w 76001
05 ABS = 149.3
_ 201 @ 7] CF=26.0
;;“w L u é 00’ ——
£ o : s ~2.51 \
= * 27063 o
o L ABS = 10.0
T 101 =2 O_L-__(_)_Ii=21.1
5' | \,__\
0 ] )
* 75016 5
] ABS = 10.0
50 CF =21.1
25 0 -
0_ 1
2010-10 2011-04 2011-10 2012-04 2012-10 Percentage

Exceedance (%)

Salwey et al (2024), HESS



DECIPHeR-GW v1: A coupled hydrological model with improved
representation of surface-groundwater interactions

a.GW table below root b.GW table within root c.GW table higher than

zone zone topography Difference in two models
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Quantifying
floods and
droughts in
rapidly
changing
human-water
systems

P 1

Surface €=
Water

%

IR

Ground
water

ey 3,
..'H - A, iy
2 s g i .
“ . «



Quantifying floods and
droughts in rapidly
changing human-water
systems

1) How do humans impact river flows?
2) Building integrated hydrological modelling frameworks

3) Where do we go next?



Looking Ahead: Community and collaboration

= Open access data, modelling and platforms

. A N
e Network of coordinated e R A 4

. Drones with imaging systems, river water and lake Training, citizen science activities, support Earth observation imagery capture,
O S e rV a t O r I e S water quality systems, sediment size distribution for partnership parking across research environmental tracing/residence [

sensors organisations, support to enable and facilitate time surveys, top-bathymetric )
industry and 3rd sector initiatives LiDAR surveys
L) L] L[]
* Unique integration of
° °
S5 Innovation test-beds
mopite an IXe & " (

Open air laboratories to support

. Q community sensor development
Infrastructure il ;. -

Land-surface imaging and sensing and systems
to characterise changing soil water content
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Groundwater
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Looking Ahead: Community and collaboration

Open access data, modelling and platforms

e, & Interdisciplinary partnership working to resolve
AR community guestions

_\'O’_ New collaborative funds? Highlight topics?
~~ UKHydro-MIP? Community review?

<o
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Groundwater level (m)

Scope of presentation
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It is not about how we measure and acquire
groundwater level data, or how that is used for
reporting of groundwater status.

Itis not about how that data is used for short-
term (1-month to 12-month) forecasting, nor for
decadal to centennial-scale modelling of
groundwater levels under change.

It is not about management responses to or
planning for hydrogeological extremes.

It’s not about specific process understanding.

It’s about the phenomenology of changing
groundwater levels over a range of spatio-
temporal scales, in response to a diverse
range of drivers of change, and, importantly,
how they relate to changes in the wider
terrestrial water cycle.




Outline of the talk

* Introduction
— Context

— Hydrogeological non-stationarity
— Phenomenology of hydrogeological

extremes

®  Spatial & temporal scales

®  Propagation of climate signals

* Eight case studies

— Methodological development (x3)
— Regional & continental scale examples (x2)
— Long term (>100 years) variations in

extremes (x2)

— Analysis of impacts of extremes (x1)
* Lessons learnt & future directions
* Audience participation (x5) .
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Cumulative citations

Context - publications in peer-reviewed literature (data from Web of Science)

50

e

“Groundwater drought”: 212 publications and 4522
citations since 1999

“Groundwater flooding” OR “Groundwater flood”:
152 publications and 3042 citations since 1994
Three most highly cited (~ 20% of all citations):

1. Bloomfield & Marchant (2013) - Standardised Groundwater
level Index

Publications per year

1400

1200 . . 2. Lietal (2019) - Global GRACE Data Assimilation for
b —s— "groundwater drought
—s— "groundwater flooding" OR "groundwater flood" Groundwater and Drought Monitoring

1000
3. Thomas et al (2017) - GRACE Groundwater Drought Index:

Evaluation of California Central Valley groundwater drought
but there have been ~147,000 “drought” and

~160,000 “flood” OR “flooding” publications since
1994 (about two orders of magnitude more!)
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Stationarity — a working definition

A stationary
process is a
stochastic process
whose probability
distribution does
not change when
shifted in time.
Consequently,
parameters such as
the mean and
variance of the
series do not
change over time

(a)

Stationary

Nonstationary

Step change

Magnitude

/1 b St 1
| m,!'m!,!|'n""'!"""'l"'
[LIKEI '

Shift in variance

it
WuW H ’u\ !ﬁ |

I\ﬂ ﬂ\

L
®

Time

Detection Drivers

e Data quality and
homogeneity

* Record length ghd

completenegs

* Climate
¢ Land cover
* Water management
* Feedbacks
Compound driver

* Magnitude
* Frequency
* Timing

* Regression
* Pooled methods

* Synthetic time series
* Change points
 Circular statistics

Empirical

Slater et al 2021. Nonstationary weather and water extremes: a
review of methods for their detection, attribution, and management

Attribution

* Exploratory data
analysis
n

-
e

Management

* Engineering design
¢ Climate models
* Hybrid approaches

stlerrtased o Validity of models
Event attribution



Stationarity - Groundwater level fluctuations
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* The Thirfield Rectory record has not been formally assessed for stationarity, but from
visual inspection we can see:

— periodic fluctuations (in this case typically annual fluctuations),

— periods of short-term stationarity (in the illustrated case over a few years),
and

— periods of non-stationary over a few years
— while the record as a whole may be stationary (no apparent change in

¢ Stationarity may be a function of the period and length of observation

variance).



Table 6.2 Summary of Mechanisms That Lead to Fluctuations
in Groundwater Levels

Uncon- Man- | Short- Long- | Climatic
fined Confined | Natural induced | lived Diurnal Seasonal term | influence

Groundwater recharge v Vv v v
(infiltration to the
water table)

Air entrapment during Vv N v v
groundwater recharge

Evapotranspiration and v v v Vv
phreatophytic
consumption

Bank-storage effects v v v Vv
near streams

Tidal effects near v v v v
oceans

Atmospheric pressure v v N v v
effects

External loading of v v v
confined aquifers

Earthquakes N4 N v

Groundwater pumpage v

<
<
<

Deep-well injection N

Artificial recharge; v v v
leakage from ponds,
lagoons, and landfills

<
“

Agricultural irrigation v Vv v v
and drainage

Geotechnical drainage v Vv Vv
of open pit mines,

Freeze & Cherry 1979 slopes, tunnels, etc.




Stationarity — controls on GW levels at different time frames

¥

"Matural"
mechanisms

"Anthropogenic"
mechanisms

Air ET & phreatic Atmospheric Earthquakes Tidal effects Bank

entrapment  consumption pressure
effects

GW

recharge

Recent
climate
variability

Geological ASR Deep- GW Land Anthropogenic
time well abstraction cover climate
climate injection change change
variability

Sub-daily
Diurnal
Seasonal/
annual
Decadal
Centenial
Greater than
centenial

Mechanisms that are influential over longer periods typically also effect larger areas
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Hydrological processes (floods & droughts),
their climate drivers and the domains that are
affected (Van Loon, 2015)
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Hydrogeological extremes - drought

Van Loon 2015

Meteorological

situation

Meteorological drought

Soil moisture drought

Hydrological drought

Socio-economic drought

Anomalies in
precipitation

v

Precipitation
deficiency

v

Low

v

Low
discharge

v

Anomaliesin
temperature

soil moisture

| Yo

low ground-
water storage

v v

Impacts

®



Anomaly

Hydrogeological extremes - drought

Precipitation

Runoff

Soil moisture

Streamflow

Groundwater

Meteorological
‘ drought(s) |
| |

Hydrological drought

Level relativ } : f
tonorm U T Tteeo. .
T oA o= —ereugdwater
oo

Time ——p

Surface water

Flux/state variable —»

Time (years)

Van Loon 2015




Eight case studies

Methodological development
Standardised Groundwater level Index (SGI) methodology
Application of a standardised index (SGFI) to characterise groundwater flooding
Correlation with other hydrological standardised indices (e.g. SSI)

Regional to continental scale examples

Regional (Lincolnshire) analysis of groundwater drought using cluster analysis of
SGI timeseries

European groundwater drought analysis
Long-term (>100 years) variations in extremes
Reconstruction of historic droughts
Signals of climate change in groundwater droughts?
Impacts of extremes
Analysis of impacts of hydrological extremes

®



Analysis of groundwater drought building on the standardised
M et h O d O I Ogy # 1 - S G I precipitation index approach

J. P. Bloomfield' and B. P. Marchant®

Hydrol. Earth Syst. Sci., 17, 4769-4787, 2013 Hydrology and Q -\

T T T T T T T www.hydrol-earth-syst-sci.net/17/4769/2013/ 3
doi:10.5194/hess-17-4769-2013 Earth System > GE
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Analysis of groundwater drought building on the standardised
precipitation index approach

J. P. Bloomfield" and B. P. Marchant®

Hydrol. Earth Syst. Sci., 17, 4769-4787, 2013
www.hydrol-earth-syst-sci.net/17/4769/2013/

doiz10.5194/hess-17-4769-2013

© Author(s) 2013. CC Auribution 3.0 License.
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Frequency Frequency Frequency

Frequency

Standardised Groundwater level Index - SGI
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The normal scores transform is

undertaken by:

« applying the inverse normal
cumulative distribution function to n
equally spaced p; values ranging
from 1/(2 n)to 1 — 1/(2 n).

« The values that result are the SGI
values.

» They are then re-ordered such that
the largest SGI value is assigned to
the i for which p; is largest, the
second largest SGI value is
assigned to the i for which p; is
second largest and so on.
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SGI autocorrelation & correlation with climate variables
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Methodology #2 — SGFI

Merididional
and zonal
circulation
episodes
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after Van Loon 2015

Hydrological
Processes

RESEARCH ARTICLE @& Full Access
Improved understanding of spatio-temporal controls on

regional scale groundwater flooding using hydrograph analysis
and impulse response functions

Volume 31, Issue 25
15 December 2017
8§ Pages 4586-4599

Advertisement

Matthew |. Ascott 4 Ben P. Marchant, David Macdonald, Andrew A. McKenzie, john Paul Bloomfield
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SGFI

Standardization to characterise groundwater flooding
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Chilgrove House hydrographs.
Ascott et al 2017. Hydrological Processes, 31, 4586-4599
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Standardized Groundwater Flood Index (SGFI)

Apply normalization to the entire set of
groundwater level measurements so the index
reflects the absolute rather than de-seasonalized
groundwater level (because groundwater flooding
is related to the absolute level of groundwater).

All negative normalized values set to zero to
focus upon periods where the groundwater levels
were higher than their median. This was done
because of the non-linear relationships
between precipitation and groundwater levels
previously documented by Eltahir and Yeh
(1999), and they were specifically interested in
possible correlations between precipitation and
incidences of flooding associated with high
groundwater levels.

(Gee)
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SGFI

SGFI

SGFI & groundwater flooding

| =
Group 1 ‘

Grouping SGFI series using k-means
cluster analysis and cross-correlation of
SGFI cluster centroids with SPI revealed
two spatially coherent groups of
standardized hydrographs that
responded to precipitation over different
timescales.
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Methodology #3 — SGI & SSI

100 a - Merididional
and zonal
circulation
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Links between SGI & SSI
Ben Marchant & Matt Ascott (in prep)
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Regional analysis of drought
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Regional analysis of groundwater droughts
using hydrograph classification

J. P. Bloomfield', B. P. Marchant?, S. H. Bricker?, and R. B. Morgan®

Hydrol. Earth Syst. Sci., 19, 4327-4344, 2015
www.hydrol-earth-syst-sci.net/19/4327/2015/

Hydrology and ¢
doi:10.5194/hess-19-4327-2015 Earth SyStem 5 EGU

© Author(s) 2015. CC Attribution 3.0 License. Sciences #
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Study area: 1 km? — 7,000 km?
Temporal range: 1 month to 30 years
Drought area: ~7,000 km?

Drought duration: 3 months — 2 years =



Regional groundwater drought characterization
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Regional groundwater drought characterization

Drought Drought  Regional Mean SGI Mean SGI  Mean SGI
episode index SPI;» CL1 CL2 CL4
1988 to 1993  Start date  Dec 1988  Oct 1988 Nov 1988  Oct 1988
CL1 CL2  CL4 Enddate  Oct 1992  May 1993 Nov 1993  May 1993
Dcvcnt 47 56 61 56
Number of.drought events 39 15 18 Moyent 56.8 37 636 416
Mean duration (months) 4.6 11.3 9.1 Tevent 12 —0.7 ~1.0 —0.7
ﬁammum duratlop (cIlIlOI‘LthS) 2?2 9 617 9 496 6 1995 to 1998  Start date  May 1995 May 1995  Aug 1995  Jul 1995
ean event magnitude 2 —/. —0. Enddate Oct1997  Jul1997  Feb 1998  Aug 1997
Mean event intensity -043 =028 —-04 Devent 30 27 31 26
Maximum event intensity —1.1 —1.05 —1.13 Meyent —343 —18.7 -324 —29.3
No. of events where I < —1 3 2 2 Levent —L1 =07 -1.0 -1
2010t0 2012  Start date Jan 2011 May 2011  Jan 2011 Jul 2010
End date  Apr2012 May2012 Aug?2012 May 2012
Devent 16 13 20 23
Mevent ~16.1 —~13.9 —~11.7 —21
Tevent ~1.0 —1.1 0.6 —0.9
Summary of drought statistics for Summary of drought statistics for individual
cluster means drought episodes @



Continental-scale analysis of drought
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Proc. IAHS, 383, 207-305, 2020

https://doi.org/10.5194/piahs-383-297-2020 Open Access
© Author(s) 2020. This work is distributed under

the Creative Commons Attribution 4.0 License.

The Groundwater Drought Initiative (GDI): Analysing and
understanding groundwater drought across Europe

Bentje Brauns', Daniela Cuba', John P. Bloomfield®, David M. Hannah’, Christopher Jackson',
Ben P. Marchant', Benedikt Heudorfer', Anne F. Van Loon'*, Héléne Bessiére*, Bo Thunholm®, and

Study area: 1 km2 — 10,000,000 km?
Temporal range: 1 month to 20 years
Drought area: 1,000 km?2 - 1,000,000 km?2
Drought duration: 3 months — 2 years



Continental scale groundwater drought propagation
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Continental scale groundwater drought propagation

R SPI, Sept 1996 & SGI Oct 1996

SPly, Mar 2002 & SGI April 2002
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European Drought Observatory - https://drought.emergency.copernicus.eu/



Bloomfield, J.P; Marchant, B.P; Wang, L.

Reconstruction of historic droughts  Historic Standardised Groundwater level
Index (SGI) for 54 UK boreholes (1891-2015)

https://doi.org/10.5285/d92c91ec-2f96-4ab2-8549-37d520dbd5fc

GWL
3888

SGI
v o N

1900 1920 1940 1960 1980 2000

on n T e OO g e
of @ \00@%0000* o o .\\‘\00\««" e Temporal range: 1 month to 125 years
Ll Drought area: 1 km2— 134,000 km?

Drought duration: 3 months — 2 years
after Van Loon 2015 g y 29 BGS
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Groundwater level reconstruction for drought analysis
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Jackson et al. 2016. Hydrological Processes, 30, 3107-3125

Using a method developed by Jackson et al (2016)
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Groundwater level reconstruction for drought analysis
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CC & groundwater drought
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after Van Loon 2015

Hydrol. Earth Syst. Sci., 23, 13931408, 2019 Hydrology and
https://doi.org/10.5194/hess-23-1393-2019

© Author(s) 2019. This work is distributed under Earth SlyStem
the Creative Commons Attribution 4.0 License. Sciences
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Changes in groundwater drought associated with
anthropogenic warming

John P. Bloomfield', Benj

in P. Marchant?, and Andrew A. McKenzie'

(a) 1891-1932 (b) 1933-1973 (c) 1974-2015
3

Temperature index, STI

Temperature index, STI
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Precipitation index, SPI

Precipitation index, SPI Precipitation index, SPI

Study area: 1 km?

Temporal range: 1 month to 125 years
Drought area: 1 km?

Drought duration: 3 months — 2 years ™
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Does CC effect groundwater drought in the UK?

Van Loon 2015

Meteorological
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Does CC effect groundwater drought in the UK?
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Does CC effect groundwater drought in the UK?
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Impacts of GW extremes
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Impacts of groundwater extremes
Matt Ascott & Ben Marchant (in prep)
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Preliminary results appear to show an increased
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Some lessons learnt

Hydrogeology Journal (2021) 29:921-924 m‘m
https://doi.org/10.1007/510040-020-02249-0 e

ESSAY
C®Ql

Managing groundwater supplies subject to drought: perspectives
on current status and future priorities from England (UK)

M. J. Ascott' (3 - J. P. Bloomfield" - I. Karapanos? - C. R. Jackson?« R. S, Ward* . A. B. McBride® - B. Dobson® -
N. Kieboom® + I. P. Holman? - A. F. Van Loon® - E. J. Crane - B. Brauns? - A. Rodriguez-Yebra®? . K. A. Upton®

+ Observations from Ascott et al (2021)
— integration of drought definitions;
— enhanced fundamental monitoring;

— Integrated modelling of groundwater in the
water cycle; and

— better information sharing.

®



Some future research directions

* Five opportunities:

A systematic review of research on hydrogeological extremes, but particularly
groundwater drought, would be timely

* identify research priorities going forward

Establish conceptual framework for relationships between spatio-temporal
scales of processes, drivers and domains

* Use this to map and analyse metadata from systematic review

Bring together reconstructed, observed and modelled groundwater extremes
(incl. assoc. uncertainty bounds) to characterise changes in groundwater extremes
over ~200 year period from late 1800s to 2100

* trends and aquifer- or region-specific phenomena?

Investigate processes that are T-sensitive and lead to groundwater drought
intensification

* guantifying these effects in the context of the strong warming signal

Develop a common approach to the quantification of impacts of groundwater
extremes and collect the data so that there is suitable inputs for future impact
modelling
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Thank you

I listening!

ppy to

J.bloomfield@pgr.reading.ac.uk
jpb@bgs.ac.uk

Superb Ant-Hill Hoverfly
Xanthogramma pedissequum
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